
Performance Analysis of Automated Sequence
Model Testing (ASMT) using Cloud Integration

 Priya Purohit Mahesh Malviya Yunus Khan
(Research Scholar, RGTU) (HOD)

Dept. of CSE Dept. of CSE
(Assistant Professor)

Dept. of CSE

 JIT Vidya Vihar JIT Vidya Vihar
Borawan(Khargone),MP(India) Borawan (Khargone),MP(India)

 JIT Vidya Vihar
 Borawan(Khargone),MP(India)

Abstract-Software is a set of programs which provide the
desired execution and reduces the human efforts. The code
generated by the software must be check against the various
rules and guidelines before delivering or deploying it. The
approach which assures the correct functionality of the
software deliverables are termed as testing methodology.
Software testing is the most important aspect of SDLC as it
looks into the behaviour of its functions and operations. Bu
testing is applied after the complete development of code
which sometimes gives changes which requires heavy test beds
results in increased cost of the coverall system Thus there
must be some way which identifies the bugs and errors before
the complete development of the software. Thus, if there is any
change then it must be accommodated into it during the
development. Taking model into consideration in testing will
provide early test case generation along with design
verification, integration and configurations for path
associated with the activity diagrams of the UML. Thus, the
work focuses on generating the test case combinations using
combinatorial approach with some specific functionality
developed for getting effective results. Apart from the above
solution, the work had also proved its applicability on the
recent area of cloud. Integration of the ASMT approach with
the cloud gives an enormous reduction in the execution time
because of Map Reduce technology. It applies the criteria with
generation modules to create novel test cases. The typical
deployment of ASMT integrated with cloud held in five
stages: setting up test criteria, test model designing, test suite
creation with the help of Aneka cloud infrastructure,
performing test & analyzing the result.

Index Terms— Cloud, Aneka, Model Based Testing (MBT),
Selection Criteria, Test Suite Creation, UML, Automated
Sequence Model Based Testing (ASMT);

I. INTRODUCTION
Testing of the software requires more than half of the
complete cost of software development. So it is a complex
process & needs to be reduced by an automated test
generation system One approach to do this would be to
produce input data to the program to be tested program-
based test data generation. The primary issue we face amid
testing is dealing with the huge number of test cases we
have to make and execute. Systematic testing of highly-
configurable software systems, e.g. systems with many
optional features, can be challenging and expensive due the
exponential growth of the number of configurations to be
tested with respect to the number of features. It is
estimated that 30% of an enterprise‘s IT budget is devoted
to the original development and 70% is for enhancements
and fixing bugs not discovered during original development

[1]. Thus the usage of Combinatorial Interaction Testing
(CIT) technique can improve the effectiveness of the
testing activity for these kinds of systems, at the only cost
of modelling the system’s configurations space [2]. For
better results test coverage criteria are additionally included
in this automated component. It characterizes the rules used
to produce test cases from the software model.

There are two sorts of criteria: data flow and control-
flow. They characterize the effort and the nature of the
results created automatically by an MBT approach. During
the time a few endeavors in automatic test data generations
have been made. The thought of path testing is to produce a
rundown of test sets that capture all conceivable paths of
component parameter values from every parameter [3]. It
alludes to the process and techniques for the automatic
deduction of abstract test cases from abstract formal models
and designs, the creation of concrete tests from abstract
tests, and the manual or automated execution of the ensuing
concrete test cases. Combinatorial testing can help detect
problems like interaction failures of combinations this early
in the testing life cycle. The key insight underlying t-way
combinatorial testing is that not every parameter
contributes to every failure and most failures are triggered
by a single parameter value or interactions between a
relatively small numbers of parameters [4]. In fact, CIT
consist in systematically testing all possible partial
configurations (that is, involving up to a fixed number of
parameters only) of the system under test.

Model based testing (MBT) refers to the type of
process that focuses on deriving a test model using
different types of formal ones, then converting this test
model into a concrete set of test cases [5]. Models are the
intermediate artifacts between requirement specification
and final code. Models preserve the essential information
from the requirement, and are the basis for implementation.
Instrumentation of models into testing process is the prime
subject of concern of our thesis. Development of unified
modeling language (UML) has helped a lot to
visualize/realize the software development process. At the
earliest stage of software development life cycle (SDLC), no
one including user and developer can see the software; only
at the final stage of the product development it is possible.
Any errors/problems found out at the final stage, it incurs a
lot of cost and time to rectify, which is very much crucial in
IT industry.

UML accomplish the visualization of software at early
stage of SDLC, which helps in many ways like confidence
of both developer and the end user on the system, earlier

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3374-3379

www.ijcsit.com 3374

error detection through proper analysis of design and etc.
UML also helps in making the proper documentation of the
software and so maintains the consistency in between the
specification and design document [6]. The key advantage
of this technique is that the test generation can
systematically derive all combination of tests associated
with the requirements represented in the model to automate
both the test design and test execution process.
Integration with Cloud

In software engineering test case generation and
evaluation is the main key to quality assurance. Analysis of
test cases may give high quality software. In fact the
process of test case generation and execution is complex
task since it involves many iterations and decisions on the
available set of parameters to choose appropriate set of test
cases. Although automated test case generation process
reduces the work but it also requires computation time and
infrastructure. The advantage of automated process is only
when it generate output efficiently and effectively.
Integration of this process with cloud infrastructure may
help to get better results on a large set of parameters as an
input. Cloud composites of a powerful infrastructure based
on map and reduce approach will definitely be having
advantage over traditional approach to calculate the test
cases.

II. RELATED STUDY
Literature gives prior views of code behavior after

complete connections are established. Use of program paths
to capture underlying program behavior is evidenced which
try to achieve path coverage in test-suite construction.
Research As we know that the program follows a path &
constitutes a unit of interconnected modules to each other.
It also gives the behavior of software codes. Thus to
identify the bugs earlier before actual development starts,
design diagrams need to be taken into consideration..
Hence, any method which covers various possible
behaviors of a given program while avoiding path
enumeration can be extremely useful for software testing.
Various researchers had worked on the path based selection
criteria for testing. Among them, test generation problem is
deemed to be an important issue in software testing
research [7]. Different approaches are developed to solve
the above mentioned issues, few of them are PSO (Particle
Swarm Optimization) [8], ACO (Ant Colony Optimization)
[9], genetic algorithm [10] etc.

In the paper [11] data mining concept based tool
generates a novel automated test case that is much superior,
less complex and easier way. Where in this Tool,
information from the UML Class diagram extracted and
mapped, tree structure is formed with the help of those
information’s, Genetic Algorithm implemented as data
mining technique, where Genetic crossover operator
applied to discover all patterns and Depth First Search
algorithm implement to Binary tree’s formed to represent
the knowledge i.e., test cases. In the paper [12] a novel
approach for generating test cases of concurrent systems
with the help of UML Sequence Diagram is shown. The
approach consists of transferring the Sequence Diagram
into a Concurrent Composite Graph (CCG). The CCG is

traversed by an effective graph traversing technique like
BFS (Breath-First-Technique) and DFS (Depth-First-
search) using message sequence path criteria to generate
the test cases for concurrent systems. The path coverage
criterion is an important concept to be considered in test
case generation is concerned [13]. In this work [14], gives
first single model that is generic enough to study GUI and
web applications together. It uses the model to define
generic prioritization criteria that are applicable to both
GUI and web applications. The ultimate goal is to evolve
the model and use it to develop a unified theory of how all
EDS should be tested. Evaluation results show the
effectiveness of the approach in the correct manner.

This paper [15] deals with automatic generation of
feasible independent paths and software test suite
optimization using artificial bee colony (ABC) based novel
search technique. In this approach, ABC combines both
global search methods done by scout bees and local search
method done by employing bees and onlooker bees. The
parallel behavior of these three bees makes generation of
feasible independent paths and software test suite
optimization faster. Test Cases are generated using test path
sequence comparison method as the fitness value objective
function. The paper also presents an approach for the
automated generation of feasible independent test path
based on the priority of all edge coverage criteria. Finally,
this paper compares the efficiency of ABC based approach
with various approaches.

In 2012 Nirpal et. al. in [16] shows that the genetic
algorithms can be used to automatically generate test cases
for path testing. Using a triangle classification program as
an example, experiment results show that Genetic
Algorithm based test data can more effectively and
efficiently than the existing method does. The quality of
test cases produces by genetic algorithms is higher than the
quality of test cases produced by random way because the
algorithm can direct the generation of test cases to the
desirable range fast. This paper shows that genetic
algorithms are useful in reducing the time required for
lengthy testing meaningfully by generating test cases for
path testing.

The paper presents a novel approach to generate the
automated test paths [17]. Due to the delay in the
development of software, testing has to be done in a short
time. This led to automation of testing because its
efficiency and also requires less manpower. In this
proposed approach, by using one of the most standard
Unified Modeling Language (UML) Activity Diagram,
construct the Activity Dependency table (ADT), then
generate the Test paths. Then the test paths are prioritized
by using the Tabular search algorithm. The prioritized test
path can be used in system testing, regressing testing and
integration testing.

The paper [18] gives an overview of Model based
slicing, including the various general approaches and
techniques used to compute slices. To understand and test a
large software product is a very challenging task. One way
to use this is program slicing technique that decomposes
the large programs into smaller ones and another is a model
based slicing that decomposes the large software

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3374-3379

www.ijcsit.com 3375

architecture model into smaller models at the early stage of
SDLC (Software Development Life Cycle). From the given
literature this has been listed out that for model based
slicing techniques, there is the use of dependency relation,
control and data flow, UML/OCL constraints, model
language are present in literature with great emphasis on
dependency relation.

An orchestrated survey of the most prominent
techniques for automatic generation of software test cases,
reviewed in self-standing sections proposed in [19]. The
techniques presented include: (a) structural testing using
symbolic execution, (b) model-based testing, (c)
combinatorial testing, (d) random testing and its variety of
adaptive random testing, and (e) search-based testing. Each
section is contributed by world renowned active researchers
on the technique, and briefly covers the basic ideas
underlying the technique, the current state of art, a
discussion of the open research problems, and a perspective
of the future development in the approach. As a whole, the
paper aims at giving an introduction, up-to-date and
(relatively) short overview of research in automatic test
case generation, while ensuring comprehensiveness and
authoritativeness.

The paper [20] proposes a novel approach for diverse
model based test case generation. It selects a subset of the
generated test suite in such a way that it can be realistically
executed and analyzed within the time and resource
constraints, while preserving the fault revealing power of
the original test suite to a maximum extent. In this article,
to address this problem, we introduce a family of
similarity-based test case selection (STCS) techniques for
test suites generated from state machines. The paper also
proposes a method to identify optimal tradeoffs between
the number of test cases to run and fault detection.

III. PROBLEM DEFINITION
Software testing and test case generation mechanism is

very time consuming. Also There accuracy and coverage
must be maximum. If the designing of the test case fails
then the testing methodology will misleads the evaluation
of software’s. Also the test automation along with its
integration must have some predefined selection rules on
the basis of which the test cases can be prioritize [21]. Test
automation reduces the overall time for SDLC which serves
high reliability and reduced cost. Also, the testing was
applied in later stages of the project which sometimes
detect those changes which only get completed in early
stages of project or involves high modification cost
associated with them. So we focused our study on Model
Based testing approach for both test case generation and
test case optimization to achieve some of the goal.
Deficiency detection using test cases got from imprecise
and ambiguous models could be extremely troublesome.
Developing a model at the privilege level of abstraction for
effective testing is one of the main difficulties for model-
based testing [22]. Early generation of test case must be
conceivable, however this model based testing yet
extracting the data obliged an intermediate graph
development will increase the trouble of cost and efforts.
Automated test generation in model-based testing can

rapidly generate an extensive number of test cases.
Notwithstanding, the increase in test cases does not
improve the quality of the test suite fundamentally and may
compromise its efficiency. Normally, the effectiveness of a
test suite is measured in terms of satisfying test
requirements (i.e. Faults & coverage) and the efficiency is
measured by the cost to attain the test requirements [23].
Here are some outlined objectives decided for the work is:

 To propose some generalized techniques to
generate test cases for object-oriented software’s
using UML Activity Diagram diagrams.

 To propose a generalized technique for optimized
and early test case generation using UML
diagrams.

 To implement the proposed methods and evaluate
their effectiveness for cloud computing.

IV. PROPOSED SOLUTION

The immediate purpose of this research is to design an
ASMT Framework [24] integrated with cloud environment
which provides assurances of reduced overhead of testing.
Some techniques for providing such assurances have been
developed in the past, but no single technique has provided
a complete solution to the problem. Thus, this thesis will
explore the effectiveness of combining two such techniques
(Unified Modeling & Combinatorial Testing) into a single
tool. The more general purpose of this research is to
improve the available methods of software testing. There
are several major challenges that completely resolved by
the suggested tool with testing modern software. Some are
as follows:
 Automation of the test case generation and their

execution.
 Development of domain and software engineering

expertise needed for adequate testing.
 Formalization and modeling of the software

specifications and implementations, and software
testing process and effects. The reduction in growing
complexity of the modern software-based systems.

 Generating Test Cases Criteria at the Time of Design
and Requirement Analysis (Early Test Case Creation
saves time & cost).
The proposed work is parted in two identified

domains: First is combinatorial test case optimization and
second is design based test data generation (Early
Generation). For this accomplishment of task we had
proposed step by step solution. It gives the better result
each time while comparing it with random test case
generation. To formally draft the approach of automated
sequence model based testing (ASMT) the work had also
presented with design architecture. The main problem with
testing is about managing the expansive number of
automated test suite creation with smaller size & less
complexity. Consequently, the work is focusing towards an
automatic and effective test case handling concept taking in
mind the early generation of test cases. The tool shows how
diverse combinations of specification of system could be
tested efficiently. It alludes to the process and techniques
for the automatic derivation of abstract test cases from a
formal model, the generation of concrete tests from abstract

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3374-3379

www.ijcsit.com 3376

tests, and the manual or automated execution of the
resulting concrete test cases from proposed framework. The
typical deployment of ASMT experiences five stages .It
begins with setting up the test criteria for most astounding
priority tests or to guarantee great coverage of the system
behaviour. At that point we design a test model which
speaks to the expected behaviour of the system under test
(SUT), standard modeling language, such as UML are
utilized to formalize the control points and perception
points of the system, expected dynamic behaviour of the
system. Next, for automated test suite creation, we apply all
the above collected subtle elements to our next proposed
enhanced ASMT based interaction algorithm for path
oriented test generation. A detail of the approach along
with the architectural description is given with the paper.

In this each generated abstract test case is typically a
sequence of abnormal state SUT actions, with input
parameters and expected yield values for each action of the
test store is carried out by updating the test model. Later in
the work accomplishes our test suite results with other
existing approaches and apparatuses. After all the activities
of automated test generation, we examine the result through
a continuous system. The key concern will be on
determining which combination of UML diagrams, and
their associated constraints, may be utilized to
automatically, or semi-automatically, generate test cases for
pair wise & combinatorial testing.
ASMT Architecture Integrated With the Cloud

A typical deployment of ASMT goes through five
stages starting from the test criteria settings and ended with
result analyses. First step takes an infinite number of
possible tests could be generated from a model. The test
analyst chooses test generation criteria to select the highest
priority tests or to ensure good coverage of the system
behaviour. Secondly, model designing is performed to
represents the expected behaviour of the system under test
(SUT). Standard modeling languages, such as the Unified
Modeling Language (UML) are used to formalize the
control points and observation points of the system, the
expected dynamic behaviour of the system. Now once the
model is defined then the test creation is performed using
cloud integration. This is an automated process that
generates the required number of high-level (abstract) test
cases from the test model using cloud infrastructure.
Parameters collected from above steps are given as an input
to the compute infrastructure, this action results in the test
cases. Each generated abstract test case is typically a
sequence of high-level SUT actions, with input parameters
and expected output values for each action of the test
repository is done by updating the test model, then
automatically regenerating the test suites.
 Next is to check generated test that are typically
executed within a standard automated test execution
environment, such as path wise interaction test tool.
Alternatively, it is possible to execute tests manually – i.e.
a tester runs each generated test on the SUT, records the
test execution results, and compares them against the
generated expected outputs. Either way, when the tests are
executed on the SUT, we find that some tests pass and
some tests fail. The failing tests indicate a discrepancy

between the SUT and model, which need to be investigated
to decide whether the failure is caused by a bug in the SUT.
At the last result is analyzed against the real system which
is to be tested and accepted by the user. The effectiveness
of test cases can be evaluated using a fault injection
technique called mutation analysis. Mutation testing is a
process by which faults are injected into the system to
verify the efficiency of the test cases. For this we are using
pairwise approach whose problem domain is NP Complete,
so the solution must be in accordance.

Figure 1: Design architecture of Proposed ASMT Model

 The work and robust experimental analysis results
presented in next section proves that the given design
architecture ASMT is well defined for improving efficiency
and performance through multiple parameters (Size, Time,
Complexity, Cost etc.) and use of powerful cloud
infrastructure. It is a well defined dynamic approach for
quality improvements because it provides effective error
detection at very low cost. ASMT with enhanced test
generation integration with cloud is used to increase the
performance of path interaction and model based testing in
many aspects. It is intended that our strategies will convey
to a designer, how much information is sufficient to enable
automatic generation of test cases in an optimized manner.
Automated test generation in model-based testing can
quickly generate a large number of test cases.

V. RESULT ANALYSIS
The work demonstrates the results by showing the

improved performance ASMT through cloud integration
over other existing strategies. For this evaluation certain
parameters is been identified and the result is been
compared. These parameters are Reduced Test Size,
Coverage, Time required, Complexity, Don’t Care
Conditions and last one is most important term possibility
of early generation of test case. To compare against other

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3374-3379

www.ijcsit.com 3377

existing strategies it is found that about 40% of the
conditions of the program were usually covered by random
test data generation, genetic approach covered 60% of the
conditions and pairwise testing outperform former two by a
considerable margin in most of our experiments. Genetic
search achieved about 85% condition-decision coverage on
average, while the random test-data generator consistently
achieved just over 55%. So the pairwise testing strategy is
proved to be an efficient test generating strategy. The
following table shows the size of generated test set
obtained by our technique as well as two other methods.
Note that the size of test suite in case of pairwise strategy
using ASMT is less than other tools and pairwise testing.
Result obtained is in the form of Comparison Table’s,
Graphs, Utilities Functions, Features, Parameter Covered
tables.

Table Conclusion:-Table 1 takes the different sets of test
with variable number of parameters and their values. Table
gives an idea that how many possible combinations of test
cases are possible and number of test cases selected by
ASMT system which is giving 100% coverage in
significantly lesser time, which saves lots of efforts of
testers.

Table 1 shows the test data extraction from UML diagram.
We used our developed UTDE algorithm to achieve this
result. On the basis of 7 parameters we shows the
performance and result assessment of UMBCA tool. UTDE
is been capable of extracting the data from given UML
diagram then convert it in to textual notations fetched by
our algorithm. The table shows reduced test size in very
short time and gives maximum coverage. The proposed
feature implemented is not present in other combinatorial
testing tool and serves as add on module for our research.
In future its improved versions are likely to be developed.

Activity Diagram Coverage Status
The below graph is used to analyze the coverage achieved
by our tool for various activity diagrams (AD). Red one
shows for 2 way interaction testing. The prime aim is
achieved because the graph shows that the tool is been
giving 100% coverage(Maximum) in all the cases of
various types of activity diagrams including complex fork
and joins with different decision conditions.
Graph 1 shows that we were getting the 100% coverage in
case of activity diagram even after extracting the data from
a different type of diagram from design phase. The above
graph will also mention the details ratio of size and
coverage.

Table-1: Generated Test Suites along with the Parametric Evaluation

Test-
Sets

No.
Parameters

No.
Parameter

Values

No. of Pairs
Covered in all
Combinations

No. Of Test
Case

Generated

Coverage
Achieved

Time Required
Don’t care
Conditions

#1 5 15 90 13 1.00(100%) 1.5769 ml sec 0
#2 4 11 44 12 1.00(100%) 1.0527 ml sec 0
#3 5 48 921 118 1.00(100%) 47.937 ml sec 0
#4 7 20 166 20 1.00(100%) 4.221 ml sec 0
#5 4 8 24 6 1.00(100%) 0.809 ml sec 0

 Activity Diagram 1 Activity Diagram 2 Activity Diagram 3

Graph 1:- Coverage analysis Graph of ASMT for different Activity Diagrams (2-Way and 3-Way)

Benefits of Approach
Advantages of ASMT integrated with cloud over other
UML based combinatorial approach is an innovative and
high-value approach compared to more conventional
functional testing approaches. The main expected benefits

of ASMT integrated with cloud may be summarized as
follows:
 Extracted the data from UML diagram to generate

test cases.
 Generating the reduced number of test cases (Test

Suite Size).

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3374-3379

www.ijcsit.com 3378

 Controlled Test Case Creation by Constraints &
Relations with reduced test suites.

 Providing the maximum test coverage (100% for 2-
way pairwise testing).

 Reducing the Test generation complexity.
 Independence from the test execution using cloud

infrastructure.
 Powerful Map Reduce based cloud infrastructure

tremendously reduces the time required to produce
test suits.

 Systematic coverage of functional behavior;
 Definition of action words (UML model operations)

used in different scripts;
 Efficient Test script generation;
 Generation of skeleton code for a library of

automation functions;
 Because of cloud integration, independence from the

test execution robot.

VI. CONCLUSION
 The thought of UML-based pair wise testing is to
utilize an explicit abstract model of a SUT and its
environment to automatically infer tests for the SUT: the
behaviour of the model of the SUT is interpreted as the
intended behaviour of the SUT. The technology of the
ASMT integrated with powerful cloud infrastructure test
case generation has matured to the point where huge scale
deployments of this technology are becoming
commonplace. The prerequisites for success, such as
qualification of the test team, integrated apparatus chain
accessibility and methods, are presently identified, and an
extensive variety of commercial and open-source tools are
accessible. Despite the fact that ASMT won't take care of
all testing problems, it is an important and valuable
technique, which brings significant advancement over the
state of the practice for functional software testing
effectiveness, and can increase productivity and improve
functional coverage.

REFERENCES
[1] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira &

Guilherme H. Travassos, “A Survey on Model-based Testing
Approaches: A Systematic Review”, in WEASELTech’07, November
5, 2007, Atlanta Georgia, USA, ACM, ISBN 978-1-59593-880-0/07,
June 2007.

[2] Jon Edvardsson, “A Survey on Automatic Test Data Generation”, in
Proceedings of the Second Conference on Computer Science and
Engineering in Linkoping, pages 21{28.ECSEL, October 1999.

[3] Renee C. Bryce, Ajitha Rajan & Mats P.E. Heimdahl, “Interaction
Testing in Model-Based Development: Effect on Model-Coverage”,
in 13th Asia Pacific Software Engineering Conference (APSEC'06),
ISBM-0-7695-2685-3/06, Aug 2007.

[4] Usman Farooq, Chiou Peng Lam & Huaizhong Li, ”Towards
Automated Test Sequence Generation”, in Proceedings of 19th
Australian Conference on Software Engineering ASWEC 2008 (pp.
441-450). Australia: Dec 2008.

[5] Robert M. Herons, “Oracles for Distributed Testing”, in School of
Information Systems, Computing, and Mathematics, Brunel
University, Uxbridge, Middlesex, UB8 3PH, UK, 2010.

[6] Suresh Thummalapenta, Saurabh Sinha, Debdoot Mukherjee &
Satish Chandra, “Automating Test Automation”, in Publication of
IBM T.J. Watson Research Center, Sep 2011.

[7] X. Chen, Q. Gu, J. Qi and D.Chen, ” Applying Particle Swarm
Optimization to Pairwise Testing”, in IEEE 34th Annual Computer
Software and Applications Conference, ISBN No.0730-3157/10,Oct
2010.

[8] Praveen Ranjan Srivastava & Km Baby, “Automated Software
Testing Using Meta-heuristic Technique Based on An Ant Colony
Optimization”, in International Symposium on Electronic System
Design (ISED), ISBN: 978-1-4244-8979-4, pp 235 – 240, Dec 2010.

[9] Premal B. Nirpal & K. V. Kale, “Using Genetic Algorithm for
Automated Efficient Software Test Case Generation for Path
Testing”, in Int. J. Advanced Networking and Applications, Volume:
02, Issue: 06, Pages: 911-915, 2011.

[10] Anuranjan Misra, Raghav Mehra, Mayank Singh, Jugnesh Kumar &
Shailendra Mishra “Novel Approach to Automated Test Data
Generation for AOP”, in International Journal of Information and
Education Technology, Vol. 1, No. 2, June 2011.

[11] Dawei Qi, Hoang D.T. Nguyen & Abhik Roychoudhury, “Path
Exploration based on Symbolic Output” in Proceedings of ACM
Conference, ESEC/FSE’11, Szeged, Hungary, ISBN 978-1-4503-
0443-6/11/09, Sep 2011.

[12] Monalisha Khandai, Arup Abhinna Acharya & Durga Prasad
Mohapatra, “A Novel Approach of Test Case Generation for
Concurrent Systems Using UML Sequence Diagram”, in IEEE
Transaction, ISBN 978-1-4244-8679-3/11, Dec 2011.

[13] A. V. K. Shanthi & Dr. G. Mohankumar, “Automated Test Case
Generation For Object Oriented Software”, in Indian Journal of
Computer Science and Engineering (IJCSE), ISSN : 0976-5166, Vol.
2 No. 4 Aug -Sep 2011.

[14] Renee C Bryce, Sreedevi Sampath & Atif M Memon, “Developing a
Single Model and Test Prioritization Strategies for Event-Driven
Software”, in IEEE Transactions on Software Engineering, Vol. 37,
No. 1, Jan 2011.

[15] Soma Sekhara Babu Lam, M L Hari Prasad Raju, Uday Kiran M &
Swaraj Ch, “Automated Generation of Independent Paths and Test
Suite Optimization Using Artificial Bee Colony”, in International
Conference on Communication Technology and System Design,
Published by Elsevier Ltd, ISSN 1877-7058, 2012.

[16] Premal B. Nirpal & K. V. Kale, “Comparison of Software Test Data
for Automatic Path Coverage Using Genetic Algorithm”, in
International Journal of Computer Science & Engineering
Technology (IJCSET), ISSN : 2229-3345, Vol. 1 No. 1, Sep 2012.

[17] A.V.K. Shanthi & G. MohanKumar, “A Novel Approach for
Automated Test Path Generation using TABU Search Algorithm”, in
International Journal of Computer Applications, ISSN 0975 –
888,Volume 48– No.13, June 2012.

[18] Rupinder Singh & Vinay Arora, “Literature Analysis on Model
based Slicing”, in International Journal of Computer Applications,
ISSN 0975 – 8887, Volume 70– No.16, May 2013.

[19] Saswat Anand, Edmund Burke et. al., “An Orchestrated Survey on
Automated Software Test Case Generation”, in Journal of Systems
and Software, Feb 2013.

[20] Hadi Hemmati & Andrea Arcuri, “Achieving Scalable Model-Based
Testing Through Test Case Diversity”, in ACM Transactions on
Software Engineering and Methodology, Vol. 22, No. 1, Article, Feb
2013.

[21] J.Srinivas1, K.Venkata Subba Reddy, Dr.A.Moiz Qyser, " Cloud
Computing Basics" published in International Journal of Advanced
Research in Computer and Communication Engineering in Vol. 1,
Issue 5, July 2012

[22] ManjraSoft white paper on "Developing MapReduce.Net
applications using Aneka 2.0" published in OCT 2010.

[23] Mr. B.Suresh Kumar, Mr. Girish Paliwal ,Mr. Manish Raghav, Mr.
Sudeep Nair, " Aneka As PaaS (Cloud Computing) " published in
Journal of Computing Technologies 2012.

[24] Priya Purohit & Yunus Khan, “An Automated Sequence Model
Based Testing for Reducing Test Suite Size Through Cloud
Integration”, in IJCSIT, Vol. 6, Issue 1, Jan 2015.

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3374-3379

www.ijcsit.com 3379

